小麦是全球主要的主食之一。因此,必须衡量,维护和改善人类消费的小麦质量。传统的小麦质量测量方法主要具有侵入性,破坏性,并且仅限于小麦样本。在典型的小麦供应链中,有许多接收点,散装小麦到来,根据要求将其存储和转发。在此接受点,传统质量测量方法的应用非常困难,而且通常非常昂贵。因此,需要非侵入性,无损的实时方法来进行小麦质量评估。满足上述标准的一种这样的方法是用于食品质量测量的高光谱成像(HSI),也可以应用于批量样品。在本文中,我们研究了如何在文献中使用HSI来评估储存的小麦质量。因此,可以在单个紧凑的文档中提供所需的信息,以在澳大利亚供应链的不同阶段实施实时数字质量评估方法。
translated by 谷歌翻译
基于硬件的加速度是促进许多计算密集型数学操作的广泛尝试。本文提出了一个基于FPGA的体系结构来加速卷积操作 - 在许多卷积神经网络模型中出现的复杂且昂贵的计算步骤。我们将设计定为标准卷积操作,打算以边缘-AI解决方案启动产品。该项目的目的是产生一个可以一次处理卷积层的FPGA IP核心。系统开发人员可以使用Verilog HDL作为体系结构的主要设计语言来部署IP核心。实验结果表明,我们在简单的边缘计算FPGA板上合成的单个计算核心可以提供0.224 GOPS。当董事会充分利用时,可以实现4.48 GOP。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
本文报道的研究通过应用计算机视觉技术将普通的垃圾桶转化为更聪明的垃圾箱。在传感器和执行器设备的支持下,垃圾桶可以自动对垃圾进行分类。特别是,垃圾箱上的摄像头拍摄垃圾的照片,然后进行中央处理单元分析,并决定将垃圾桶放入哪个垃圾箱中。我们的垃圾箱系统的准确性达到90%。此外,我们的模型已连接到Internet,以更新垃圾箱状态以进行进一步管理。开发了用于管理垃圾箱的移动应用程序。
translated by 谷歌翻译
本文调查了差异隐私(DP)与公平性交集中的最新工作。它审查了隐私和公平性可能使目标对准或对比目标的条件,分析了DP如何以及为什么在决策问题和学习任务中加剧偏见和不公平性,并描述了DP系统中出现的公平问题的可用缓解措施。该调查提供了对在公平镜头下部署隐私制度学习或决策任务时,对主要挑战和潜在风险的统一理解。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
This study proposes an approach for establishing an optimal multihop ad-hoc network using multiple unmanned aerial vehicles (UAVs) to provide emergency communication in disaster areas. The approach includes two stages, one uses particle swarm optimization (PSO) to find optimal positions to deploy UAVs, and the other uses a behavior-based controller to navigate the UAVs to their assigned positions without colliding with obstacles in an unknown environment. Several constraints related to the UAVs' sensing and communication ranges have been imposed to ensure the applicability of the proposed approach in real-world scenarios. A number of simulation experiments with data loaded from real environments have been conducted. The results show that our proposed approach is not only successful in establishing multihop ad-hoc routes but also meets the requirements for real-time deployment of UAVs.
translated by 谷歌翻译
Self-Supervised Learning (SSL) is crucial for real-world applications, especially in data-hungry domains such as healthcare and self-driving cars. In addition to a lack of labeled data, these applications also suffer from distributional shifts. Therefore, an SSL method should provide robust generalization and uncertainty estimation in the test dataset to be considered a reliable model in such high-stakes domains. However, existing approaches often focus on generalization, without evaluating the model's uncertainty. The ability to compare SSL techniques for improving these estimates is therefore critical for research on the reliability of self-supervision models. In this paper, we explore variants of SSL methods, including Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision, as well as BERT and GPT for language tasks. We train SSL in auxiliary learning for vision and pre-training for language model, then evaluate the generalization (in-out classification accuracy) and uncertainty (expected calibration error) across different distribution covariate shift datasets, including MNIST-C, CIFAR-10-C, CIFAR-10.1, and MNLI. Our goal is to create a benchmark with outputs from experiments, providing a starting point for new SSL methods in Reliable Machine Learning. All source code to reproduce results is available at https://github.com/hamanhbui/reliable_ssl_baselines.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
Calculating an Air Quality Index (AQI) typically uses data streams from air quality sensors deployed at fixed locations and the calculation is a real time process. If one or a number of sensors are broken or offline, then the real time AQI value cannot be computed. Estimating AQI values for some point in the future is a predictive process and uses historical AQI values to train and build models. In this work we focus on gap filling in air quality data where the task is to predict the AQI at 1, 5 and 7 days into the future. The scenario is where one or a number of air, weather and traffic sensors are offline and explores prediction accuracy under such situations. The work is part of the MediaEval'2022 Urban Air: Urban Life and Air Pollution task submitted by the DCU-Insight-AQ team and uses multimodal and crossmodal data consisting of AQI, weather and CCTV traffic images for air pollution prediction.
translated by 谷歌翻译